
Translucency Sorting in Sodium: Implementation and
Analysis
Excerpts and Further Explanation

douira
27. April, 2025

Institute for Theoretical Computer Science
University of Lübeck

1 / 43

Contents

1. Motivation and Introduction

2. Rendering and Simple Translucency Sorting

3. Sorting with Graphs

4. Sorting with Partition Trees

5. Sorting the Unsortable: Quad Splitting

6. Bonus Section: The Theory of Unaligned Partitioning

7. Conclusion

Adapted from the presentation of my Master’s thesis.

2 / 43

Motivation and Introduction

Translucent Rendering in Sodium

(a) Incorrect rendering (b) Correct rendering

Figure 1: Many-layered translucency is a common effect in Minecraft.

→ Sodium 0.6+ has correct translucent rendering
→ Minecraft implements it too, but slower and with occasional errors

3 / 43

Translucency in General

This is not a new problem!

• Translucency is common (but frequently avoided) in computer graphics
• Translucency (like stained glass) 6= Transparency (like leaves)
• Minecraft/Sodium use ordered rendering of quads with alpha-blending
• Alternative approach: Order-independent transparency

• Visual inaccuracy
• Ground-truth variants slower
• Incompatibility with targeted platforms

4 / 43

Rendering and Simple Translucency
Sorting

Rendering Quads

Figure 2: Only the translucents in Hermitcraft Season 8

• Blocks are rendered as multiple one-sided quads
→ Using alpha blending: interpolation with alpha factor, non-associative
→ Back-to-front ordering required for correct image (order with index buffer)

5 / 43

The Translucency Sorting Problem

Problem (Quad-based Translucency Sorting)

• Given is a set of one-sided quads Q, each consisting of four vertexes
q = (v1, v2, v3, v4) ∈ (R3)4 with Vq = {v1, v2, v3, v4}. Each quad’s vertexes lie in
the same plane Pq = (nq,dq) with the unit normal vector nq ∈ R3 and
distance from the origin dq ∈ R (also referred to as dot product).

• Quad-based translucency sorting entails finding a permutation S of the
quads in Q such that quads with greater depth are rendered before those
with lower depth.

• A quad q may be omitted from S if it is facing away from the camera’s
position c ∈ R3 and thus is not visible.

6 / 43

Unsortable Instances

Figure 3: Cyclically overlapping geometry is
unsortable.

Figure 4: Intersecting geometry is
unsortable.

→ Unsortable geometry requires splitting quads or per-pixel sorting
→ Quad splitting works! See Section 5

7 / 43

Simple Special Cases i

Figure 5: No sorting required if aligned to the bounding box.

8 / 43

Simple Special Cases ii

Figure 6: No sorting required if opposite facing and each only has one plane (i.e. dot
product value).

9 / 43

Simple Special Cases iii

A B C D E

Figure 7: Quads with two opposing orientations can be sorted by dot product.
→ Static Normal-Relative Sorting

10 / 43

Sort Types

• Static: One sort order is correct for all view points
• Dynamic: Updated as camera moves and re-sorting is triggered
• Data gathered during meshing determines sort type
• Sort types:

• None
• Static Normal-Relative (SNR) Sort
• Static Graph Sort
• Dynamic Graph or Partition Tree Sort

11 / 43

Distance Sorting i

(a) Aligned geometry (b) Unaligned geometry

Figure 8: Center distance sorting is not correct in some situations.

12 / 43

Distance Sorting ii

• Sorting by distance from the camera to the center of each quad

→ Correct in many cases, but not universally, even with frequent sorting

• Invalidation is unspecific and is only estimated

• Used as a fallback when all other methods fail

13 / 43

Sorting with Graphs

Topological Sorting of the Visibility Graph

• Sorting based on potential visual overlap
→ One correct sort order for a set of view points: Camera polytope C
• Sorting the visibility graph GC topologically yields a sort order

Definition (Accurate Visibility Condition)

• A quad p is visible through another quad q, referred to as q seeing p, if there
is a view ray from a position s ∈ C to a point t ∈ Sp that intersects with a
point in Sq. Sx is the surface of a quad x ∈ Q.

• Additionally, both quads must be facing the camera to be visible at all with
(s− t) · np > 0 and (s− t) · nq > 0.

14 / 43

Dynamic Sorting With the Camera Polytope

→ Camera polytope is constrained by planes of invisible quads
• Camera exits the camera polytope when a quad becomes visible
• Triggering is implemented with a combination of interval trees and sorted
lists of dot products

Figure 9: A quad q, the camera polytope C in orange, the visible space TCq in blue
(rendered before q), and the intermediary space in green (rendered after q).

15 / 43

Complexity of Visibility Graph Sorting

• The camera polytope has constant complexity with quantized normals
• Evaluating the visibility condition takes constant time
• Visibility is not transitive
• Topological sorting may need to process O(|Q|2) edges

→ Finding a visible neighbor efficiently is hard

C

r p q

Figure 10: The arrows indicate the visibility relation, and view rays are represented by
dotted lines. The relation is not transitive since q cannot see r.

16 / 43

The Implementation of Graph Sorting and its Limits i

Figure 11: Many simple but
non-trivial structures can be solved
statically even with the reduced
visibility condition.

• Static sorting for limited size instances with
reduced visibility condition

• Avoids solving a linear program for the
accurate visibility condition

• Assumes visibility from anywhere: C = R3

• Permits testing visibility with just
axis-aligned bounding boxes

17 / 43

The Implementation of Graph Sorting and its Limits ii

• For non-static sorting, separators alleviate some cycles
• Finding unaligned separators is infeasible

C

Figure 12: The separator proves that the blue quad is not visible through the green quad
from any point in C. A curved view ray is impossible.

18 / 43

The Implementation of Graph Sorting and its Limits iii

Figure 13: This scene is statically sortable
with the reduced visibility condition as
long as the red quad is not included.

C

Figure 14: An aligned separator makes this
scene dynamically sortable, though not
statically because the camera polytope is
finite.

19 / 43

Sorting with Partition Trees

Valid and Useful Partitions

Definition (Valid Partition)

• A partition R = (g,d) of R3 is a plane described by normal g ∈ R3 and
distance d ∈ R.

• A partition is valid, also called a free cut, if no quads are intersected by the
partition plane.

Definition (Useful Partition)
A partition R is useful if it partitions Q into at least two non-empty subsets.

20 / 43

Partition Trees i

• A tree arises from recursive multi-partitioning
→ Indexes are written for partitions in back-to-front

order from the camera perspective
• It always generates a sort order in linear time
• Sorting is triggered when the camera crosses a
partition plane

→ Construction in O(n2 log n), in O(n log2 n) if balanced Figure 15: The tree
degenerates to a list in
the worst case.

21 / 43

Partition Trees ii

Figure 16: An example of recursive multi-partitioning on 2D lines.

22 / 43

Multi-Partitioning With Known Orientation

1. Projects the quads along a known
orientation

2. Sorts the interval endpoints
3. Scans the list for gaps that permit
partitions

Figure 17: Projection along two axes yields
two gaps for each one.

→ The orientation is known: Axis-aligned partitioning only
• Generates as many partition planes as possible
• Quads can be on the partition plane 23 / 43

Unpartitionable Instances

Figure 18: These aligned quads are not partitionable, even
when certain quads are removed.

Figure 19: These unaligned
quads are not partitionable.

24 / 43

Extensions and Special Cases

• Detecting special cases during partitioning allows for fewer nodes and
partition planes

• Partial tree updates improve partitioning speed for large sections
• Index compression reduces memory usage very slightly
• Primary intersector detection avoids failure on intersecting geometry

25 / 43

Overall Implementation Performance i

• Partition tree sorting is faster than distance sorting by 60%

• Static visibility graph sorting avoids some dynamic sorting

• Detecting static special cases is important

• Distribution of sort types varies significantly with scene content
→ Distance sorting is never used in practice

26 / 43

Overall Implementation Performance ii

Scene No Sorting SNR Static Topo. Partition Tree
Hermitcraft S9 1470 600 3113 4266
Hermitcraft S7 2793 378 1980 3339
Frozen Ocean 768 439 4597 4454
Mixed Terrain 1729 938 2053 1869
Ocean 3271 309 4345 2676

Table 1: Section counts per sort type

27 / 43

Overall Implementation Performance iii

World Tree Build Tree Sort Distance Sort Static Topo.
Hermitcraft S9 136 17 26 309
Hermitcraft S7 127 14 24 298
Frozen Ocean 135 12 23 303
Mixed Terrain 140 18 27 307
Ocean 123 27 36 316

Table 2: Mean time to perform a task on a section in nanoseconds per quad

28 / 43

Sorting the Unsortable: Quad
Splitting

Sorting the Unsortable: Quad Splitting

(a) Without quad splitting (Sodium 0.6/Vanilla) (b) With quad splitting

→ Splitting quads fixes sorting when intersecting or unsortably arranged
• More expensive during mesh building but impact is limited
• PR#2993 is ready, merge schedule unknown. Testing builds available! 29 / 43

Quad Splitting in Detail

• Splitting triggered when there’s no aligned partition
• Simple in concept!

1. Pick split plane with a simple heuristic
2. Split all quads into inside/outside fragments along
split plane

3. Generate partition tree node as usual

• Geometry amplified up to O(n2) (→Not relevant in
practice)

• Average case is simple
• Limit on generated geometry size prevents
performance impact

Figure 21: Two intersecting
quads

30 / 43

Fuzzing Quad Splitting

(a) Randomly generated quads (b) Splitting result visualized with random colors

Figure 22: Fuzzing the quad splitting system with randomly positioned quads helped me
find many bugs.

31 / 43

Numerical Stability

Figure 23: Errors (marked
in blue) accumulate with
only 32-bit floating point
accuracy under repeated
re-interpolation of vertex
attributes.
→ The algorithm could be
redesigned to not
accumulate the error
(difficult)

32 / 43

Demo

Figure 24: Works well with FramedBlocks! Thanks to XFactHD for the use case example.
33 / 43

Bonus Section: The Theory of
Unaligned Partitioning

Overview of the Problem Space

intersecting
unsortable

unaligned

non-intersecting

sortable

unaligned partitionable

aligned partitionable

SNR sortable

always sorted

aligned

34 / 43

Unaligned Partitioning

Problem (Unaligned Partitioning (UAP))
Given a set of n partitionable quads Q, does a valid and useful partition R exist,
and what are its parameters?

• Only known-orientation partitioning is fast
→ Large solution space of unknown-orientation partitions
• No hard cases of UAP naturally appear in Minecraft

Figure 25: Aligned geometry can require an unaligned partition.
35 / 43

UAP in Parameter Space

• Slope-offset parametrization y ≥ ux + vz + d of
planes yields parameter space L = R3

→ There is a linear mapping from p ∈ R3 to the
parameter-space half-space containing all R ∈ L
for which p is in the real-space half-space H=

R

→ Parameter-space faces correspond to real-space
vertexes

• Valid partition sets and useful partition sets as
expressions over parameter-space half-spaces

Figure 26: Valid partition set
highlighted in red for blue
quad q.

36 / 43

Useful Partitions in Parameter Space

(a) Full (b) Right side

Figure 27: Useful partition set in parameter space highlighted in red for the three quads in
real space. 37 / 43

Upper Bounds on UAP

• Combinatorial solution in Θ(n4)
1. Pick all triples of vertexes to form a plane
2. Test the partition for validity and usefulness
3. Mitigate a global useless autopartition with an artificial vertex

• Incremental solution possible as linear constraint sets (LCS) instance, but
worse time complexity

• Can also be solved with LCS-SAT

38 / 43

Lower Bounds on UAP

• Depending on the input constraints to UAP, it can solve LCS
• Transfer of lower bound on LCS to UAP

→ Maps half-space constraints to vertices
• Requires more quads and expensive collision avoidance if for strict
formulations of UAP

39 / 43

Conclusion

Conclusion

• Usually translucency requires OIT
• Minecraft’s specific type of geometry makes quad-based translucency sorting
tractable

→ Taking advantage of many special cases and well partitionable geometry
• Ground-truth results are possible, faster than distance sorting
• Correct translucent rendering without hardware support
• Quad splitting solves all remaining cases
• Unaligned partitioning is infeasible, but polynomial

40 / 43

Outlook

• Is an acceleration structure for the reduced visibility condition feasible and
useful?

• Can visibility graph sorting within the partition tree improve its
characteristics?

• To what extent can convex partitioning, a superset of unaligned partitioning,
form a bridge between partition and graph-based sorting?

• How can numerical instability be mitigated in recursive quad splitting?

41 / 43

Acknowledgements

I would like to thank

• my thesis advisor Dr. Sebastian Berndt, without whom this would not have
been possible,

• my family and friends for supporting me during this journey,
• JellySquid and other contributors to Sodium for creating Sodium and
providing both a platform and valuable feedback,

• members of the CaffeineMC discord server who helped me test and debug
both the original implementation and the new quad splitting features,

• and Muzikbike for helping me perfect quad splitting by discovering
numerous edge cases.

42 / 43

Thank you for listening!

Time for Q&A

43 / 43

	Motivation and Introduction
	Rendering and Simple Translucency Sorting
	Sorting with Graphs
	Sorting with Partition Trees
	Sorting the Unsortable: Quad Splitting
	Bonus Section: The Theory of Unaligned Partitioning
	Conclusion

