
Implementation and Analysis of Geometric Algorithms for
Translucency Sorting in Minecraft

Masterarbeit

douira
22. April, 2024

Institut für Theoretische Informatik
Universität zu Lübeck

1 / 30

Contents

1. Motivation and Introduction

2. Rendering and Simple Translucency Sorting

3. Sorting with Graphs

4. Sorting with Partition Trees

5. Unaligned Partitioning

6. Conclusion

2 / 30

Motivation and Introduction

Translucent Rendering in Sodium

(a) Incorrect rendering (b) Correct rendering

Figure 1: A Minecraft scene with translucent blocks showcasing the problem.

→ This work adds correct translucent rendering to Sodium
→ Minecraft implements it too, but slower and with errors

3 / 30

Translucency in General

• Translucency is common in computer graphics

• Translucency 6= Transparency

• Minecraft/Sodium use ordered rendering of quads with alpha-blending
• Alternative approach: Order-independent transparency

• Visual inaccuracy
• Ground-truth variants slower
• Incompatibility with targeted platforms

4 / 30

Contributions of the Thesis

• Implementation of indexed translucent rendering in Sodium

• Improvements to distance sorting

• Special case handling to simplify sorting where possible

• Topological visibility graph sorting

• Plane-based sort triggering

• Partition tree sorting

• Analysis of unaligned partitioning

5 / 30

Rendering and Simple Translucency
Sorting

Rendering Quads

• Blocks are rendered as multiple one-sided quads

• Each 16× 16× 16 block section is meshed after any change

→ Alpha blending: interpolation with alpha factor, non-associative

→ Back-to-front ordering required for correct image

• The GPU renders quads in the order of the index buffer

6 / 30

The Translucency Sorting Problem

Problem (Quad-based Translucency Sorting)

• Given is a set of one-sided quads Q, each consisting of four vertexes
q = (v1, v2, v3, v4) ∈ (R3)4 with Vq = {v1, v2, v3, v4}. Each quad’s vertexes
lie in the same plane Pq = (nq,dq) with the unit normal vector nq ∈ R3

and distance from the origin dq ∈ R.

• Quad-based translucency sorting entails finding a permutation S of the
quads in Q such that quads with greater depth are rendered before
those with lower depth.

• A quad q may be omitted from S if it is facing away from the camera’s
position c ∈ R3 and thus is not visible.

7 / 30

Unsortable Instances

Figure 2: Cyclically overlapping geometry is
unsortable.

Figure 3: Intersecting geometry is
unsortable.

→ Unsortable geometry requires fragmenting quads or per-pixel sorting

8 / 30

Simple Special Cases

Figure 4: No sorting
required if aligned to the
bounding box.

Figure 5: No sorting required
if opposite facing and only
one dot product value.

A B C D E

Figure 6: Quads with two
opposing orientations can
be sorted by dot product.
(SNR Sorting)

9 / 30

Sort Types

• Static: One sort order is correct for all view points

• Dynamic: Updated as camera moves and re-sorting is triggered

• Data gathered during meshing determines sort type
• Sort types:

• None
• SNR (Static Normal-Relative)
• Static Graph Sort
• Dynamic Graph Sort/Partition Tree

10 / 30

Distance Sorting

• Sorting by distance from the camera to the center of each quad

→ Correct in many cases, but not universally, even with frequent sorting

• Invalidation is unspecific and is only estimated

• Used as a fallback when all other methods fail

(a) Aligned geometry (b) Unaligned geometry

Figure 7: Center distance sorting is not correct in some situations.

11 / 30

Sorting with Graphs

Topological Sorting of the Visibility Graph

• Sorting based on potential visual overlap

→ One correct sort order for a set of view points: Camera polytope C

• Sorting the visibility graph GC topologically yields a sort order

Definition (Accurate Visibility Condition)

• A quad p is visible through another quad q, referred to as q seeing p, if
there is a view ray from a position s ∈ C to a point t ∈ Sp that intersects
with a point in Sq. Sx is the surface of a quad x ∈ Q.

• Additionally, both quads must be facing the camera to be visible at all
with (s− t) · np > 0 and (s− t) · nq > 0.

12 / 30

Dynamic Sorting With the Camera Polytope

→ Camera polytope is constrained by planes of invisible quads
• Camera exits the camera polytope when a quad becomes visible
• Triggering is implemented with a combination of interval trees and
sorted lists of dot products

Figure 8: A quad q, the camera polytope C in orange, the visible space TCq in blue
(rendered before q), and the intermediary space in green (rendered after q).

13 / 30

Complexity of Visibility Graph Sorting

• The camera polytope has constant complexity with quantized normals

• Evaluating the visibility condition takes constant time

• Visibility is not transitive

• Topological sorting may need to process O(|Q|2) edges

→ Finding a visible neighbor efficiently is hard

C

r p q

Figure 9: The arrows indicate the visibility relation, and view rays are represented by
dotted lines. The relation is not transitive since q cannot see r.

14 / 30

The Implementation of Graph Sorting and its Limits

• Static sorting for limited size instances with reduced visibility condition
• Avoids solving a linear program for the accurate visibility condition
• Assumes visibility from anywhere: C = R3
• Permits testing visibility with just axis-aligned bounding boxes

• For non-static sorting, separators alleviate some cycles

• Finding unaligned separators is infeasible

C

Figure 10: The separator proves that the blue quad is not visible through the green
quad from any point in C. A curved view ray is impossible.

15 / 30

Sorting with Partition Trees

Valid and Useful Partitions

Definition (Valid Partition)

• A partition R = (g,d) of R3 is a plane described by normal g ∈ R3 and
distance d ∈ R.

• A partition is valid, also called a free cut, if no quads are intersected by
the partition plane.

Definition (Useful Partition)
A partition R is useful if it partitions Q into at least two non-empty subsets.

16 / 30

Partition Trees

• A tree arises from recursive multi-partitioning

→ Indexes are written for partitions in back-to-front
order from the camera perspective

• It always generates a sort order in linear time

• Sorting is triggered when the camera crosses a
partition plane

→ Construction in O(n2 log n), in O(n log2 n) if balanced

Figure 11: The tree
degenerates to a list
in the worst case.

Figure 12: An example of recursive multi-partitioning on 2D lines.

17 / 30

Multi-Partitioning With Known Orientation

1. Projects the quads along a known
orientation

2. Sorts the interval endpoints

3. Scans the list for gaps that permit
partitions

Figure 13: Projection along two axes yields
two gaps for each one.

→ The orientation is known: Axis-aligned partitioning only

• Generates as many partition planes as possible

• Quads can be on the partition plane

18 / 30

Unpartitionable Instances

Figure 14: These aligned quads are not partitionable,
even when certain quads are removed.

Figure 15: These unaligned
quads are not partitionable.

19 / 30

Extensions and Special Cases

• Detecting special cases during partitioning allows for fewer nodes and
partition planes

• Partial tree updates improve partitioning speed for large sections

• Index compression reduces memory usage very slightly

• Primary intersector detection avoids failure on intersecting geometry

20 / 30

Overall Implementation Performance

• Partition tree sorting is faster than distance sorting by 60%

• Static visibility graph sorting avoids some dynamic sorting

• Detecting static special cases is important

• Distribution of sort types varies significantly with scene content

→ Distance sorting is never used in practice

21 / 30

Unaligned Partitioning

Overview of the Problem Space

intersecting

unsortable

unaligned

non-intersecting

sortable

unaligned partitionable

aligned partitionable

SNR sortable

always sorted

aligned

22 / 30

Unaligned Partitioning

Problem (Unaligned Partitioning (UAP))
Given a set of n partitionable quads Q, does a valid and useful partition R
exist, and what are its parameters?

• Only known-orientation partitioning is fast

→ Large solution space of unknown-orientation partitions

• No hard cases of UAP naturally appear in Minecraft

Figure 16: Aligned geometry can require an unaligned partition.

23 / 30

UAP in Parameter Space

• Slope-offset parametrization y ≥ ux + vz + d
of planes yields parameter space L = R3

→ Linear mapping from p ∈ R3 to the
parameter-space half-space containing all
R ∈ L for which p is in the real-space
half-space H=

R

→ Parameter-space faces correspond to
real-space vertexes

• Valid partition sets and useful partition sets
as expressions over parameter-space
half-spaces Figure 17: Valid partition set

highlighted in red for blue
quad q.

24 / 30

Useful Partitions in Parameter Space

(a) Full (b) Right side

Figure 18: Useful partition set highlighted in red for the three quads.

25 / 30

Upper Bounds on UAP

• Combinatorial solution in Θ(n4)
1. Pick all triples of vertexes to form a plane
2. Test the partition for validity and usefulness
3. Mitigate a global useless autopartition with an artificial vertex

• Incremental solution with linear constraint sets (LCS) possible, but
worse time complexity

• Can also be solved with LCS-SAT

26 / 30

Lower Bounds on UAP

• Depending on the input constraints to UAP, it can solve LCS

• Transfer of lower bound on LCS to UAP

→ Maps half-space constraints to vertices

• Requires more quads and expensive collision avoidance if UAP is strict

27 / 30

Conclusion

Conclusion

• Usually translucency requires OIT

• Minecraft’s specific type of geometry makes quad-based translucency
sorting tractable

→ Taking advantage of many special cases and well partitionable geometry

• Ground-truth results are possible, faster than distance sorting

• Correct translucent rendering without hardware support

• Unaligned partitioning is infeasible, but polynomial

28 / 30

Outlook

• Is an acceleration structure for the reduced visibility condition feasible
and useful?

• Can visibility graph sorting within the partition tree improve its
characteristics?

• To what extent can convex partitioning, a superset of unaligned
partitioning, form a bridge between partition and graph-based sorting?

29 / 30

Thank you for listening!

30 / 30

	Motivation and Introduction
	Rendering and Simple Translucency Sorting
	Sorting with Graphs
	Sorting with Partition Trees
	Unaligned Partitioning
	Conclusion

